Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.486
Filtrar
1.
J Pharm Biomed Anal ; 245: 116160, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38663256

RESUMO

Technical advances in the field of quality analysis allow an increasingly deeper look into the impurity profile of drugs. The ability to detect unexpected impurities in addition to known impurities ensures the supply of high-quality drugs and can prevent recalls due to the detection of harmful unexpected impurities, as has happened recently with the N-nitrosamine and azido impurities in losartan (LOS) drug products. In the present study, the LC-MS/HRMS approach described by Backer et al. was applied to an even more complex system, being the investigation of 35 LOS drug products and combination preparations purchased in 2018 and 2022 in German pharmacies. The film-coated tablets were analysed by means of four LC-MS/HRMS method variants. For the separation a Zorbax RR StableBond C18 column (3.0 ×100 mm, particle size of 3.5 µm, pore size of 80 Å), a gradient elution and for mass spectrometric detection a qTOF mass spectrometer with electrospray ionization in positive and negative mode was used. An information-dependent acquisition method was applied for the acquisition of high-resolution mass spectrometry data. The combination of an untargeted and a targeted screening approach revealed the finding of eight impurities in total. Beside the five LOS related compounds, LOS impurity F, J, K, L, M, and related compound D from amlodipine besilate, LOS azide and an unknown derivative thereof were detected. Identification and structure elucidation, respectively, were successfully performed using in silico fragmentation. Differences in the impurity profiles of drug products from 2018 and 2022 could be observed. This study shows that broad screening approaches like this are applicable to the analysis of drug products and can be an important enhancement of the quality assurance of medicinal products.

2.
Sci Rep ; 14(1): 9508, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664476

RESUMO

Foxtail millet is a highly nutritious crop, which is widely cultivated in arid and semi-arid areas worldwide. Humic acid (HA), as a common plant growth regulator, is used as an organic fertilizer and feed additive in agricultural production. However, the impact of potassium humate KH on the photosynthetic rate and yield of foxtail millet has not yet been studied. We explored the effects of KH application on the morphology, photosynthetic ability, carbon and nitrogen metabolism, and yield of foxtail millet. A field experiment was performed using six concentrations of KH (0, 20, 40, 80, 160, and 320 kg ha-1) supplied foliarly at the booting stage in Zhangza 10 cultivar (a widely grown high-yield variety). The results showed that KH treatment increased growth, chlorophyll content (SPAD), photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs). In addition, soluble protein content, sugar content, and nitrate reductase activity increased in KH-treated plants. With increased KH concentration, the effects became more evident and the peak values of each factor were achieved at 80 kg ha-1. Photosynthetic rate showed significant correlation with SPAD, Tr, Gs, and soluble protein content, but was negatively correlated with intercellular CO2 concentration. Compared to that of the control, the yield of foxtail millet under the T2, T3, T4, and T5 (40, 80, 160, and 320 kg ha-1 of KH) treatments significantly increased by 6.0%, 12.7%, 10.5%, and 8.6%, respectively. Yield exhibited a significant positive correlation with Tr, Pn, and Gs. Overall, KH enhances photosynthetic rate and yield of foxtail millet, therefore it may be conducive to stable millet production. These findings may provide a theoretical basis for the green and efficient production of millet fields.


Assuntos
Clorofila , Fertilizantes , Substâncias Húmicas , Fotossíntese , Setaria (Planta) , Fotossíntese/efeitos dos fármacos , Setaria (Planta)/metabolismo , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/crescimento & desenvolvimento , Clorofila/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo
3.
Heliyon ; 10(7): e29117, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623221

RESUMO

The potential of Aspergillus niger, to enhance non-exchangeable potassium (K+) release from mineral structures were investigated as a cost-effective and environmentally friendly alternative to traditional chemical fertilizers. Optimizing the culture medium for maximum K+ release, alongside identifying potential mechanisms of action of the A. niger including the production of various organic acids and pH reduction in the minerals feldspar and phlogopite, were among the primary objectives of the present study. K+ dissolution from feldspar and phlogopite in the presence of Aspergillus niger were examined through a two-step experiment; impact of different carbon sources (glucose, sucrose, and fructose) on K+ release using the Plackett-Burman design (PBD) with 12 experimental runs and effect of other independent variables including pH (ranging from 5 to 10), carbon concentration (3-12.3 g l-1), and incubation time (5-18 days) on K+ release using the central composite design (CCD). Our results indicated that the PBD demonstrated a strong predictive capacity (RMSE = 0.012-0.018 g l-1 and R2 = 0.85-0.89) for K+ release. According to the CCD model, pH exerted a significant positive influence on increasing soluble K+ release (P < 0.001). The highest levels of K+ release (157.8 and 175.3 mg l-1 in feldspar and phlogopite, respectively) were observed at the central levels (0) of time and carbon source, and at the +α level (+1.68) of pH. Furthermore, based on the CCD model, the optimal conditions for achieving high K+ release from feldspar and phlogopite in a medium were pHs of 10.36 and 10.31, sucrose concentrations of 11.23 and 11.32 g l-1, and incubation times of 15 and 18 days, respectively. The determination coefficients of the CCD model indicated that 89.5% and 92.6% of the changes in soluble K+ for feldspar and phlogopite, could be explained by this model, respectively. In the current study, the production of organic acids and the resulting pH reduction, along with the reduction in mineral particle size in feldspar and phlogopite, were identified as potential mechanisms influencing the enhancement of potassium solubility. The predominant acids in both feldspar and phlogopite were lactic acid (70.9 and 69.15 mg l-1) and citric acid (40.48 and 22.93 mg l-1), although the production levels of organic acids differed in the two minerals. Overall, our findings highlight the potential of A. niger to proficiently release non-exchangeable potassium from mineral matrices, indicating its promising potential in agricultural applications.

4.
Food Chem X ; 22: 101347, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623503

RESUMO

Increased prevalence of diabetes prompts the development of foods with reduced starch digestibility. This study analyzed the impact of adding soluble dietary fiber (inulin-IN; polydextrose-PD) to baked gluten-starch matrices (7.5-13%) on microstructure formation and in vitro starch digestibility. IN and PD enhanced water-holding capacity, the hardness of baked matrices, and lowered water activity in the formulated matrices, potentially explaining the reduced starch gelatinization degree as IN or PD concentration increased. A maximum gelatinization decrease (26%) occurred in formulations with 13% IN. Micro-CT analysis showed a reduction in total and open porosity, which, along with the lower gelatinization degree, may account for the reduced in vitro starch digestibility. Samples with 13% IN exhibited a significantly lower rapidly available glucose fraction (8.56 g/100 g) and higher unavailable glucose fraction (87.76 g/100 g) compared to the control (34.85 g/100 g and 47.59 g/100 g, respectively). These findings suggest the potential for developing healthier, starch-rich baked foods with a reduced glycemic impact.

5.
Plants (Basel) ; 13(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592853

RESUMO

HAK/KUP/KT family members have been identified as playing key roles in K+ uptake and salt tolerance in numerous higher plants. However, their functions in cassava (Manihot esculenta Cantz) remain unknown. In this study, a gene encoding for a high-affinity potassium transporter (MeHAK5) was isolated from cassava and its function was investigated. Subcellular localization analysis showed that MeHAK5 is a plasma membrane-localized transporter. RT-PCR and RT-qPCR indicated that MeHAK5 is predominantly expressed in cassava roots, where it is upregulated by low potassium or high salt; in particular, its highest expression levels separately increased by 2.2 and 2.9 times after 50 µM KCl and 150 mM NaCl treatments. When heterologously expressed in yeast, MeHAK5 mediated K+ uptake within the cells of the yeast strain CY162 and rescued the salt-sensitive phenotype of AXT3K yeast. MeHAK5 overexpression in transgenic Arabidopsis plants exhibited improved growth and increased shoot K+ content under low potassium conditions. Under salt stress, MeHAK5 transgenic Arabidopsis plants accumulated more K+ in the shoots and roots and had reduced Na+ content in the shoots. As a result, MeHAK5 transgenic Arabidopsis demonstrated a more salt-tolerant phenotype. These results suggest that MeHAK5 functions as a high-affinity K+ transporter under K+ starvation conditions, improving K+/Na+ homeostasis and thereby functioning as a positive regulator of salt stress tolerance in transgenic Arabidopsis. Therefore, MeHAK5 may be a suitable candidate gene for improving K+ utilization efficiency and salt tolerance.

6.
Public Health Nutr ; 27(1): e117, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602104

RESUMO

OBJECTIVE: Monitoring time trends in salt consumption is important for evaluating the impact of salt reduction initiatives on public health outcomes. There has so far not been available data to indicate if salt consumption in Norway has changed during the previous decade. We aimed to assess whether average 24-h salt intake estimated from spot urine samples in the adult population of mid-Norway changed from 2006-2008 to 2017-2019 and to describe variations by sex, age and educational level. DESIGN: Repeated cross-sectional studies. SETTING: The population-based Trøndelag Health Study (HUNT). PARTICIPANTS: In each of two consecutive waves (HUNT3: 2006-2008 and HUNT4: 2017-2019), spot urine samples were collected from 500 men and women aged 25-64 years, in addition to 250 men and women aged 70-79 years in HUNT4. Based on spot urine concentrations of Na, K and creatinine and age, sex and BMI, we estimated 24-h Na intake using the International Cooperative Study on Salt and Blood Pressure (INTERSALT) equation for the Northern European region. RESULTS: Mean (95 % CI) estimated 24-h salt intakes in men were 11·1 (95 % CI 10·8, 11·3) g in HUNT3 and 10·9 (95 % CI 10·6, 11·1) g in HUNT4, P = 0·25. Corresponding values in women were 7·7 (95 % CI 7·5, 7·9) g and 7·7 (95 % CI 7·5, 7·9) g, P = 0·88. Mean estimated salt intake in HUNT4 decreased with increasing age in women, but not in men, and it did not differ significantly across educational level in either sex. CONCLUSIONS: Estimated 24-h salt intake in adult men and women in mid-Norway did not change from 2006-2008 to 2017-2019.


Assuntos
Cloreto de Sódio na Dieta , Humanos , Masculino , Noruega , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Transversais , Idoso , Cloreto de Sódio na Dieta/administração & dosagem , Cloreto de Sódio na Dieta/urina , Sódio/urina , Sódio na Dieta/urina , Sódio na Dieta/administração & dosagem , Potássio/urina , Creatinina/urina
7.
J Physiol Sci ; 74(1): 26, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654149

RESUMO

Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer. Exogenous application of ATP (10-100 µM) evoked relaxation of the esophageal smooth muscle in a longitudinal direction under the condition of carbachol (1 µM) -induced precontraction. Pretreatment with a non-selective P2 receptor antagonist, suramin (500 µM), and a P2Y receptor antagonist, cibacron blue F3GA (200 µM), inhibited the ATP (100 µM) -induced relaxation, but a P2X receptor antagonist, pyridoxal phosphate-6-azophenyl-2,4-disulfonic acid (50 µM), did not affect it. A blocker of ATP-dependent potassium channels (KATP channels), glibenclamide (200 µM), inhibited the ATP-induced relaxation and application of an opener of KATP channels, nicorandil (50 µM), produced relaxation. The findings suggest that ATP is involved in inhibitory regulation of the longitudinal smooth muscle in the muscularis mucosae of the rat esophagus via activation of P2Y receptors and then opening of KATP channels.


Assuntos
Trifosfato de Adenosina , Esôfago , Canais KATP , Músculo Liso , Receptores Purinérgicos P2Y , Animais , Ratos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Músculo Liso/metabolismo , Masculino , Receptores Purinérgicos P2Y/metabolismo , Esôfago/efeitos dos fármacos , Esôfago/fisiologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Canais KATP/metabolismo , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/fisiologia , Ratos Wistar , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/fisiologia , Ratos Sprague-Dawley
8.
Front Mol Neurosci ; 17: 1372662, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660387

RESUMO

The potassium-chloride co-transporter 2, KCC2, is a neuron-specific ion transporter that plays a multifunctional role in neuronal development. In mature neurons, KCC2 maintains a low enough intracellular chloride concentration essential for inhibitory neurotransmission. During recent years, pathogenic variants in the KCC2 encoding gene SLC12A5 affecting the functionality or expression of the transporter protein have been described in several patients with epilepsy of infancy with migrating focal seizures (EIMFS), a devastating early-onset developmental and epileptic encephalopathy. In this study, we identified a novel recessively inherited SLC12A5 c.692G>A, p. (R231H) variant in a patient diagnosed with severe and drug-resistant EIMFS and profound intellectual disability. The functionality of the variant was assessed in vitro by means of gramicidin-perforated patch-clamp experiments and ammonium flux assay, both of which indicated a significant reduction in chloride extrusion. Based on surface immunolabeling, the variant showed a reduction in membrane expression. These findings implicate pathogenicity of the SLC12A5 variant that leads to impaired inhibitory neurotransmission, increasing probability for hyperexcitability and epileptogenesis.

9.
Front Neuroanat ; 18: 1348032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645671

RESUMO

The brain contains thousands of millions of synapses, exhibiting diverse structural, molecular, and functional characteristics. However, synapses can be classified into two primary morphological types: Gray's type I and type II, corresponding to Colonnier's asymmetric (AS) and symmetric (SS) synapses, respectively. AS and SS have a thick and thin postsynaptic density, respectively. In the cerebral cortex, since most AS are excitatory (glutamatergic), and SS are inhibitory (GABAergic), determining the distribution, size, density, and proportion of the two major cortical types of synapses is critical, not only to better understand synaptic organization in terms of connectivity, but also from a functional perspective. However, several technical challenges complicate the study of synapses. Potassium ferrocyanide has been utilized in recent volume electron microscope studies to enhance electron density in cellular membranes. However, identifying synaptic junctions, especially SS, becomes more challenging as the postsynaptic densities become thinner with increasing concentrations of potassium ferrocyanide. Here we describe a protocol employing Focused Ion Beam Milling and Scanning Electron Microscopy for studying brain tissue. The focus is on the unequivocal identification of AS and SS types. To validate SS observed using this protocol as GABAergic, experiments with immunocytochemistry for the vesicular GABA transporter were conducted on fixed mouse brain tissue sections. This material was processed with different concentrations of potassium ferrocyanide, aiming to determine its optimal concentration. We demonstrate that using a low concentration of potassium ferrocyanide (0.1%) improves membrane visualization while allowing unequivocal identification of synapses as AS or SS.

10.
Methods Mol Biol ; 2757: 315-359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38668975

RESUMO

Unlike in the Cnidaria, where muscle cells are coupled together into an epithelium, ctenophore muscles are single, elongated, intramesogleal structures resembling vertebrate smooth muscle. Under voltage-clamp, these fibers can be separated into different classes with different sets of membrane ion channels. The ion channel makeup is related to the muscle's anatomical position and specific function. For example, Beroe ovata radial fibers, which are responsible for maintaining the rigidity of the body wall, generate sequences of brief action potentials whereas longitudinal fibers, which are concerned with mouth opening and body flexions, often produce single longer duration action potentials.Beroe muscle contractions depend on the influx of Ca2+. During an action potential the inward current is carried by Ca2+, and the increase in intracellular Ca2+ concentration generated can be monitored in FLUO-3-loaded cells. Confocal microscopy in line scan mode shows that the Ca2+ spreads from the outer membrane into the core of the fiber and is cleared from there relatively slowly. The rise in intracellular Ca2+ is linked to an increase in a Ca2+-activated K+ conductance (KCa), which can also be elicited by iontophoretic Ca2+ injection. Near the cell membrane, Ca2+ clearance monitored using FLUO3, matches the decline in the KCa conductance. For light loads, Ca2+ is cleared rapidly, but this fast system is insufficient when Ca2+ influx is maintained. Action potential frequency may be regulated by the slowly developing KCa conductance.


Assuntos
Cálcio , Ctenóforos , Músculo Liso , Animais , Músculo Liso/fisiologia , Músculo Liso/metabolismo , Cálcio/metabolismo , Ctenóforos/fisiologia , Técnicas de Patch-Clamp/métodos , Potenciais de Ação/fisiologia , Contração Muscular/fisiologia , Fenômenos Eletrofisiológicos , Eletrofisiologia/métodos , Microscopia Confocal
11.
Artigo em Inglês | MEDLINE | ID: mdl-38641463

RESUMO

Potassium-ion hybrid capacitors (PIHCs) represent a burgeoning class of electrochemical energy storage devices characterized by their remarkable energy and power densities. Utilizing amorphous carbon derived from sustainable biomass presents an economical and environmentally friendly option for anode material in high-rate potassium-ion storage applications. Nevertheless, the potassium-ion storage capacity of most biomass-derived carbon materials remains modest. Addressing this challenge, nitrogen doping engineering and the design of distinctive nanostructures emerge as effective strategies for enhancing the electrochemical performance of amorphous carbon anodes. Developing highly nitrogen-doped nanocarbon materials is a challenging task because most lignocellulosic biomasses lack nitrogen functional groups. In this work, we propose a general strategy for directly carbonizing supermolecule-mediated lignin organic molecular aggregate (OMA) to prepare highly nitrogen-doped biomass-derived nanocarbon. We obtained lignin-derived, highly nitrogen-doped turbine-like carbon (LNTC). Featuring a three-dimensional turbine-like structure composed of amorphous, thin carbon nanosheets, LNTC demonstrated a capacity of 377 mAh g-1 when used as the anode for PIHCs. This work also provides a new synthesis method for preparing highly nitrogen-doped nanocarbon materials derived from biomass.

12.
Public Health Nutr ; : 1-23, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644629

RESUMO

OBJECTIVE: Switching regular salt (sodium chloride) for salt enriched with potassium chloride (25% potassium chloride, 75% sodium chloride) has been shown to reduce blood pressure and the risk of cardiovascular diseases. We sought to define the potential for current production of sodium chloride and potassium chloride to support a global switch to the use of potassium-enriched salt. DESIGN: We summarised data from geological surveys, government reports and trade organisations describing the global production and supply of sodium chloride and potash (the primary source of potassium chloride) and compared this to potential requirements for potassium-enriched salt. SETTING: Global. SUBJECTS: N/A. RESULTS: Approximately 280 million tonnes of sodium chloride were produced in 2020 with China and the United States the main producers. Global production of potash from which potassium chloride is extracted was about 44 million tonnes with Canada, Belarus, Russia and China providing 77% of the world's supply. There were 48 countries in which potassium-enriched salt is currently marketed with 79 different brands identified. Allowing for loss of salt between manufacture and consumption, a full global switch from regular salt to potassium-enriched salt would require about 9.7 million tonnes of sodium chloride to be replaced with 9.7 million tonnes of potassium chloride annually. CONCLUSIONS: Significant up-scaling of the production of potassium chloride and the capacity of companies able to manufacture potassium-enriched salt, as well as a robust business case for the switch to potassium chloride, would be required.

13.
Small ; : e2401314, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644698

RESUMO

Bismuth-based materials have been recognized as the appealing anodes for potassium-ion batteries (PIBs) due to their high theoretical capacity. However, the kinetics sluggishness and capacity decline induced by the structure distortion predominately retard their further development. Here, a heterostructure of polyaniline intercalated Bi2O2CO3/MXene (BOC-PA/MXene) hybrids is reported via simple self-assembly strategy. The ingenious design of heterointerface-rich architecture motivates significantly the interior self-built-in electric field (IEF) and high-density electron flow, thus accelerating the charge transfer and boosting ion diffusion. As a result, the hybrids realize a high reversible specific capacity, satisfying rate capability as well as long-term cycling stability. The in/ex situ characterizations further elucidate the stepwise intercalation-conversion-alloying reaction mechanism of BOC-PA/MXene. More encouragingly, the full cell investigation further highlights its competitive merits for practical application in further PIBs. The present work not only opens the way to the design of other electrodes with an appropriate working mechanism but also offers inspiration for built-in electric-field engineering toward high-performance energy storage devices.

14.
Heliyon ; 10(8): e29461, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644816

RESUMO

The global aluminium industry is ever-changing and primarily relies on bauxite as its traditional source. However, due to the finite reserves of processed bauxite, alternative sources need to be found. Nephelines have emerged as potential alumina sources. In addition to alumina, nepheline processing can yield marketable products such as soda, potash, cement, and rare metals. The objective of this study was to identify the ideal conditions for selectively extracting potassium from alkaline leaching solutions while separating it from sodium alkali, aluminium, and silicon during the comprehensive processing of nepheline syenites from the Kubasadyr deposit. This approach involved a two-stage hydrothermal leaching process with an incremental calcium addition. Under optimal conditions, the potassium extraction in the alkaline solution reached 93.91 %. The resulting leaching solution served as a feedstock for potassium sulfate production through the crystallization method. The preliminary selective separation of potassium played a crucial role in mitigating its adverse effects on the extraction of aluminium, which is the primary processed product; thus, the economic viability of production was enhanced.

15.
AAPS PharmSciTech ; 25(4): 79, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589718

RESUMO

The development of suitable dosage forms is essential for an effective pharmacological treatment in children. Orally disintegrating tablets (ODTs) are attractive dosage forms that avoid swallowing problems, ensure dosage accuracy and are easy to administer as they disintegrate in the oral cavity. This study aimed to develop ODTs containing losartan potassium (LP) for the treatment of arterial hypertension in children. The ODTs, produced by the cost-effective manufacturing process of direct compression, consisted of a mixture of diluent, superdisintegrant, glidant and lubricant. Five superdisintegrants (croscarmellose sodium, two grades of crospovidone, sodium starch glycolate and pregelatinized starch) were tested (at two concentrations), and combined with three diluents (mannitol, lactose and sorbitol). Thus, thirty formulations were evaluated based on disintegration time, hardness and friability. Two formulations, exhibiting the best results concerning disintegration time (< 30 s), hardness and friability (≤ 1.0%), were selected as the most promising ones for further evaluation. These ODTs presented favourable drug-excipient compatibility, tabletability and flow properties. The in vitro dissolution studies demonstrated 'very rapid' drug release. Preliminary stability studies highlighted the requirement of a protective packaging. All quality properties retained appropriate results after 12 months of storage in airtight containers. In conclusion, the ODTs were successfully developed and characterised, suggesting a potential means to accomplish a final prototype that enables an improvement in childhood arterial hypertension treatment.


Assuntos
Hipertensão , Losartan , Humanos , Criança , Análise Custo-Benefício , Solubilidade , Administração Oral , Composição de Medicamentos/métodos , Excipientes , Hipertensão/tratamento farmacológico , Comprimidos , Dureza
16.
Arch Biochem Biophys ; 755: 109999, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621444

RESUMO

Escherichia coli uptake potassium ions with the coupling of proton efflux and energy utilization via proton FOF1-ATPase. In this study contribution of formate hydrogen lyase (FHL) complexes in the proton/potassium fluxes and the formation of proton conductance (CMH+) were investigated using fhlA mutant strain. The proton flux rate (JH+) decreased in fhlA by âˆ¼ 25 % and ∼70 % during the utilization of glucose and glycerol, respectively, at 20 h suggesting H+ transport via or through FHL complexes. The decrease in JK+ in fhlA by ∼40 % proposed the interaction between FHL and Trk secondary transport system during mixed carbon fermentation. Moreover, the usage of N,N'-dicyclohexylcarbodiimide (DCCD) demonstrated the mediation of FOF1-ATPase in this interaction. CMH+ was 13.4 nmol min-1 mV-1 in WT at 20 h, which decreased by 20 % in fhlA. Taken together, FHL complexes have a significant contribution to the modulation of H+/K+ fluxes and the CMH + for efficient energy transduction and regulation of the proton motive force during mixed carbon sources fermentation.

17.
Nano Lett ; 24(15): 4546-4553, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588452

RESUMO

Organic materials have attracted extensive attention for potassium-ion batteries due to their flexible structure designability and environmental friendliness. However, organic materials generally suffer from unavoidable dissolution in aprotic electrolytes, causing an unsatisfactory electrochemical performance. Herein, we designed a weakly solvating electrolyte to boost the potassium storage performance of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). The electrolyte induces an in situ morphology evolution and achieves a nanowire structure. The weakly dissolving capability of ethylene glycol diethyl ether-based electrolyte and unique nanowire structure effectively avoid the dissolution of PTCDA. As a result, PTCDA shows excellent cycling stability (a capacity retention of 89.1% after 2000 cycles) and good rate performance (70.3 mAh g-1 at 50C). In addition, experimental detail discloses that the sulfonyl group plays a key role in inducing morphology evolution during the charge/discharge process. This work opens up new opportunities in electrolyte design for organic electrodes and illuminates further developments of potassium-ion batteries.

18.
Physiol Rep ; 12(7): e15996, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561252

RESUMO

The large conductance, calcium, and voltage-active potassium channels (BKCa) were originally discovered in Drosophila melanogaster as slowpoke (slo). They are extensively characterized in fly models as ion channels for their roles in neurological and muscular function, as well as aging. BKCa is known to modulate cardiac rhythm and is localized to the mitochondria. Activation of mitochondrial BKCa causes cardioprotection from ischemia-reperfusion injury, possibly via modulating mitochondrial function in adult animal models. However, the role of BKCa in cardiac function is not well-characterized, partially due to its localization to the plasma membrane as well as intracellular membranes and the wide array of cells present in mammalian hearts. Here we demonstrate for the first time a direct role for BKCa in cardiac function and cardioprotection from IR injury using the Drosophila model system. We have also discovered that the BKCa channel plays a role in the functioning of aging hearts. Our study establishes the presence of BKCa in the fly heart and ascertains its role in aging heart function.


Assuntos
Drosophila melanogaster , Drosophila , Ratos , Animais , Ratos Sprague-Dawley , Coração , Mitocôndrias , Mamíferos
19.
Plant Biotechnol J ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578842

RESUMO

Potassium (K+) plays a crucial role as a macronutrient in the growth and development of plants. Studies have definitely determined the vital roles of K+ in response to pathogen invasion. Our previous investigations revealed that rice plants infected with rice grassy stunt virus (RGSV) displayed a reduction in K+ content, but the mechanism by which RGSV infection subverts K+ uptake remains unknown. In this study, we found that overexpression of RGSV P1, a specific viral protein encoded by viral RNA1, results in enhanced sensitivity to low K+ stress and exhibits a significantly lower rate of K+ influx compared to wild-type rice plants. Further investigation revealed that RGSV P1 interacts with OsCIPK23, an upstream regulator of Shaker K+ channel OsAKT1. Moreover, we found that the P1 protein recruits the OsCIPK23 to the Cajal bodies (CBs). In vivo assays demonstrated that the P1 protein competitively binds to OsCIPK23 with both OsCBL1 and OsAKT1. In the nucleus, the P1 protein enhances the binding of OsCIPK23 to OsCoilin, a homologue of the signature protein of CBs in Arabidopsis, and facilitates their trafficking through these CB structures. Genetic analysis indicates that mutant in oscipk23 suppresses RGSV systemic infection. Conversely, osakt1 mutants exhibited increased sensitivity to RGSV infection. These findings suggest that RGSV P1 hinders the absorption of K+ in rice plants by recruiting the OsCIPK23 to the CB structures. This process potentially promotes virus systemic infection but comes at the expense of inhibiting OsAKT1 activity.

20.
Sci Rep ; 14(1): 7834, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570597

RESUMO

Potassium channels belong to the super family of ion channels and play a fundamental role in cell excitability. Kir channels are potassium channels with an inwardly rectifying property. They play a role in setting the resting membrane potential of many excitable cells including neurons. Although putative Kir channel family genes can be found in the Apis mellifera genome, their functional expression, biophysical properties, and sensitivity to small molecules with insecticidal activity remain to be investigated. We cloned six Kir channel isoforms from Apis mellifera that derive from two Kir genes, AmKir1 and AmKir2, which are present in the Apis mellifera genome. We studied the tissue distribution, the electrophysiological and pharmacological characteristics of three isoforms that expressed functional currents (AmKir1.1, AmKir2.2, and AmKir2.3). AmKir1.1, AmKir2.2, and AmKir2.3 isoforms exhibited distinct characteristics when expressed in Xenopus oocytes. AmKir1.1 exhibited the largest potassium currents and was impermeable to cesium whereas AmKir2.2 and AmKir2.3 exhibited smaller currents but allowed cesium to permeate. AmKir1 exhibited faster opening kinetics than AmKir2. Pharmacological experiments revealed that both AmKir1.1 and AmKir2.2 are blocked by the divalent ion barium, with IC50 values of 10-5 and 10-6 M, respectively. The concentrations of VU041, a small molecule with insecticidal properties required to achieve a 50% current blockade for all three channels were higher than those needed to block Kir channels in other arthropods, such as the aphid Aphis gossypii and the mosquito Aedes aegypti. From this, we conclude that Apis mellifera AmKir channels exhibit lower sensitivity to VU041.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Animais , Abelhas/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Potenciais da Membrana/fisiologia , Potássio , Clonagem Molecular , Isoformas de Proteínas/genética , Césio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...